The Bound of Varopoulos and Embeddings of $\ell^1(n)$

Gadadhar Misra

Indian Institute of Science, Bangalore

Ramakrishna Mission Vidyamandira September 27, 2016 Definition (Complex Grothendieck Constant) Let $((a_{jk}))_{n \times n}$ be a complex array satisfying

$$\left| \sum_{j,k=1}^{n} a_{jk} s_{j} t_{k} \right| \leq \max \left\{ |s_{j}| |t_{k}| : 1 \leq j, k \leq n \right\}, \tag{1}$$

where $s_j, t_k \in \mathbb{C}$. Then there exists K > 0 such that for any choice of sequence of vectors $(x_j)_1^n$, $(y_k)_1^n$ in a complex Hilbert space \mathbb{H} , we have

$$\Big|\sum_{j,k=1}^n a_{jk}\langle x_j,y_k\rangle\Big| \leq K \max\left\{\|x_j\|\|y_k\| : 1 \leq j, k \leq n\right\}. \tag{2}$$

The least constant K satisfying inequality (2) is denoted by $K_G^{\mathbb{C}}$ and called complex Grothendieck constant.

 The Grothendieck constant makes an unexpected appearance in the early work of Varopoulos. Setting

$$C_2(n) = \sup \{ \|p(T)\| : \|p\|_{\mathbb{D}^n,\infty} \le 1, \|T\|_{\infty} \le 1 \},$$

where the supremum is taken over all complex polynomials p in n variables of degree at most 2 and commuting n - tuples $T := (T_1, \ldots, T_n)$ of contractions, he shows that

$$\lim_{n\to\infty} C_2(n) \leq 2K_G^{\mathbb{C}},$$

where $K_G^{\mathbb{C}}$ is the complex Grothendieck constant.

Rajeev Gupta in his PhD thesis shows that

$$\lim_{n\to\infty} C_2(n) \le \frac{3\sqrt{3}}{4} K_G^{\mathbb{C}},$$

which is a significant improvement in the inequality of Varopoulos

• The Grothendieck constant makes an unexpected appearance in the early work of Varopoulos. Setting

$$C_2(n) = \sup \{ \|p(T)\| : \|p\|_{\mathbb{D}^n,\infty} \le 1, \|T\|_{\infty} \le 1 \},$$

where the supremum is taken over all complex polynomials p in n variables of degree at most 2 and commuting n - tuples $T := (T_1, \ldots, T_n)$ of contractions, he shows that

$$\lim_{n\to\infty} C_2(n) \leq 2K_G^{\mathbb{C}},$$

where $K_G^{\mathbb{C}}$ is the complex Grothendieck constant.

• Rajeev Gupta in his PhD thesis shows that

$$\lim_{n\to\infty} C_2(n) \leq \frac{3\sqrt{3}}{4} K_G^{\mathbb{C}},$$

which is a significant improvement in the inequality of Varopoulos.

- Although, the embedding of $\ell^{\infty}(n)$ as diagonal matrices in the normed space (with respect to the operator norm) of $n \times n$ matrices M_n is evidently isometric, Rajeev Gupta and Md. Ramiz Reza show that $\ell^1(n)$, n > 1, has no such isometric embedding into M_k for any $k \in \mathbb{N}$.
- ullet Several isometric embeddings of $\ell^1(n), n \in \mathbb{N},$ into $\mathcal{B}(\mathbb{H})$ are discussed.
- All of these are shown to be completely isometric to the MIN structure. Adapting an example due to Parrott, an operator space structure for $\ell^1(n)$, n > 2, is produced which is distinct from the MIN Structure.

- Although, the embedding of $\ell^{\infty}(n)$ as diagonal matrices in the normed space (with respect to the operator norm) of $n \times n$ matrices M_n is evidently isometric, Rajeev Gupta and Md. Ramiz Reza show that $\ell^1(n)$, n > 1, has no such isometric embedding into M_k for any $k \in \mathbb{N}$.
- Several isometric embeddings of $\ell^1(n), n \in \mathbb{N}$, into $\mathcal{B}(\mathbb{H})$ are discussed.
- All of these are shown to be completely isometric to the MIN structure. Adapting an example due to Parrott, an operator space structure for $\ell^1(n)$, n>2, is produced which is distinct from the MIN Structure.

Theorem (Varopoulos,1976) Suppose $K_G^{\mathbb{C}}$ denote the complex Grothendieck constant. Then

$$\mathcal{K}_{G}^{\mathbb{C}} \leq \sup \| \textit{p}(\textit{T}_{1}, \ldots, \textit{T}_{\textit{n}}) \| \leq 2 \mathcal{K}_{G}^{\mathbb{C}}$$

where supremum is over all $n \in \mathbb{N}$, tuples of commuting contractions $T = (T_1, \ldots, T_n)$ and polynomial p of degree 2 with $\|p\|_{\infty} \le 1$.

The following theorem improves upon the upper bound of Varopolous.

Theorem

Suppose p is a polynomial of degree at most 2 in n variables and $T = (T_1, ..., T_n)$ be a tuple of commuting contractions on a Hilbert space \mathbb{H} . Then

$$\|p(T_1,\ldots,T_n)\|\leq \frac{3\sqrt{3}}{4}K_G^{\mathbb{C}}\|p\|_{\infty}.$$

•Let
$$a = (a_1, \ldots, a_n) \in \mathbb{D}^n$$
, $\Phi_j(z) = \frac{z+a_j}{1+\overline{a}_j z}$ and $\Phi(z) = \overline{z} = (\Phi_1(z))$

- ullet arphi be the automorphism of the unit disc such that arphi(f(a))=0.
- $D(\varphi \circ f \circ \Phi)(0) = \varphi'(f(a))Df(a)D\Phi(0)$
- $g := \varphi \circ f \circ \Phi : \mathbb{D}^n \to \mathbb{D}$
- Applying the Schwarz lemma, we see that Dg(0) is a contractive linear functional on $(\mathbb{C}^n, \|\cdot\|_{\mathbb{D}^n,\infty})$.

•
$$Df(a) = \varphi'(f(a))^{-1} \sum_{j=1}^{n} \frac{\partial_{j}g(0)}{1 - |a_{j}|^{2}}$$

•Let
$$a=(a_1,\ldots,a_n)\in\mathbb{D}^n,\ \Phi_j(z)=\frac{z+a_j}{1+\overline{a_j}z}$$
 and $\Phi(z_1,\ldots,z_n)=(\Phi_1(z_1),\ldots,\Phi_n(z_n)).$

- ullet arphi be the automorphism of the unit disc such that arphi(f(a))=0
- $D(\varphi \circ f \circ \Phi)(0) = \varphi'(f(a))Df(a)D\Phi(0)$
- $g := \varphi \circ f \circ \Phi : \mathbb{D}^n \to \mathbb{D}$
- ullet Applying the Schwarz lemma, we see that Dg(0) is a contractive linear functional on $(\mathbb{C}^n,\|\cdot\|_{\mathbb{D}^n,\infty})$.

•
$$Df(a) = \varphi'(f(a))^{-1} \sum_{j=1}^{n} \frac{\partial_{j}g(0)}{1 - |a_{j}|^{2}}$$

•Let
$$a = (a_1, \ldots, a_n) \in \mathbb{D}^n$$
, $\Phi_j(z) = \frac{z+a_j}{1+\overline{a}_jz}$ and $\Phi(z_1, \ldots, z_n) = (\Phi_1(z_1), \ldots, \Phi_n(z_n))$.

- φ be the automorphism of the unit disc such that $\varphi(f(a)) = 0$.
- $D(\varphi \circ f \circ \Phi)(0) = \varphi'(f(a))Df(a)D\Phi(0)$
- $g := \varphi \circ f \circ \Phi : \mathbb{D}^n \to \mathbb{D}$
- ullet Applying the Schwarz lemma, we see that Dg(0) is a contractive linear functional on $(\mathbb{C}^n,\|\cdot\|_{\mathbb{D}^n,\infty})$.

•
$$Df(a) = \varphi'(f(a))^{-1} \sum_{j=1}^{n} \frac{\partial_{j}g(0)}{1 - |a_{j}|^{2}}$$

- •Let $a=(a_1,\ldots,a_n)\in\mathbb{D}^n,\ \Phi_j(z)=rac{z+a_j}{1+\overline{a}_jz}$ and $\Phi(z_1,\ldots,z_n)=(\Phi_1(z_1),\ldots,\Phi_n(z_n)).$
- ullet φ be the automorphism of the unit disc such that $\varphi(f(a))=0$.
- $D(\varphi \circ f \circ \Phi)(0) = \varphi'(f(a))Df(a)D\Phi(0)$.
- $g := \varphi \circ f \circ \Phi : \mathbb{D}^n \to \mathbb{D}$
- Applying the Schwarz lemma, we see that Dg(0) is a contractive linear functional on $(\mathbb{C}^n, \|\cdot\|_{\mathbb{D}^n,\infty})$.

•
$$Df(a) = \varphi'(f(a))^{-1} \sum_{j=1}^{n} \frac{\partial_{j}g(0)}{1 - |a_{j}|^{2}}$$

•Let
$$a=(a_1,\ldots,a_n)\in\mathbb{D}^n,\ \Phi_j(z)=rac{z+a_j}{1+\overline{a}_jz}$$
 and $\Phi(z_1,\ldots,z_n)=(\Phi_1(z_1),\ldots,\Phi_n(z_n)).$

- φ be the automorphism of the unit disc such that $\varphi(f(a)) = 0$.
- $D(\varphi \circ f \circ \Phi)(0) = \varphi'(f(a))Df(a)D\Phi(0)$.
- $g := \varphi \circ f \circ \Phi : \mathbb{D}^n \to \mathbb{D}$
- ullet Applying the Schwarz lemma, we see that Dg(0) is a contractive linear functional on $(\mathbb{C}^n,\|\cdot\|_{\mathbb{D}^n,\infty})$.

•
$$Df(a) = \varphi'(f(a))^{-1} \sum_{j=1}^{n} \frac{\partial_{j}g(0)}{1 - |a_{j}|^{2}}$$

- •Let $a = (a_1, \ldots, a_n) \in \mathbb{D}^n$, $\Phi_j(z) = \frac{z+a_j}{1+\overline{a}_jz}$ and $\Phi(z_1, \ldots, z_n) = (\Phi_1(z_1), \ldots, \Phi_n(z_n))$.
- φ be the automorphism of the unit disc such that $\varphi(f(a)) = 0$.
- $D(\varphi \circ f \circ \Phi)(0) = \varphi'(f(a))Df(a)D\Phi(0)$.
- $g := \varphi \circ f \circ \Phi : \mathbb{D}^n \to \mathbb{D}$
- Applying the Schwarz lemma, we see that Dg(0) is a contractive linear functional on $(\mathbb{C}^n, \|\cdot\|_{\mathbb{D}^n,\infty})$.

•
$$Df(a) = \varphi'(f(a))^{-1} \sum_{j=1}^{n} \frac{\partial_{j}g(0)}{1 - |a_{j}|^{2}}$$

•Let
$$a = (a_1, \ldots, a_n) \in \mathbb{D}^n$$
, $\Phi_j(z) = \frac{z+a_j}{1+\overline{a}_jz}$ and $\Phi(z_1, \ldots, z_n) = (\Phi_1(z_1), \ldots, \Phi_n(z_n))$.

•
$$\varphi$$
 be the automorphism of the unit disc such that $\varphi(f(a)) = 0$.

- $D(\varphi \circ f \circ \Phi)(0) = \varphi'(f(a))Df(a)D\Phi(0)$.
- $g := \varphi \circ f \circ \Phi : \mathbb{D}^n \to \mathbb{D}$
- Applying the Schwarz lemma, we see that Dg(0) is a contractive linear functional on $(\mathbb{C}^n, \|\cdot\|_{\mathbb{D}^n,\infty})$.

•
$$Df(a) = \varphi'(f(a))^{-1} \sum_{j=1}^{n} \frac{\partial_{j}g(0)}{1 - |a_{j}|^{2}}$$

- $\bullet \|Df(a)\|_1 \le (1 |f(a)|^2) \max_j \frac{1}{1 |a_i|^2}.$
- $||Df(a)||_1 \le \frac{1}{1-r^2}$; where $|a_i| < r$.
- ullet Df is a map from $r\mathbb{D}^n$ to $rac{1}{1-r^2}(\mathbb{D}^n)^*$.
- •A second application of the Schwarz lemma shows that $D^2 f(0)$ is a linear operator on \mathbb{C}^n which maps $r\mathbb{D}^n$ into $\frac{1}{1-r^2}(\mathbb{D}^n)^*$.
- $\bullet \|D^2 f(0)\|_{\ell^{\infty}(n) \to \ell^1(n)} \le \frac{1}{r(1-r^2)}.$
- $||D^2f(0)||_{\ell^{\infty}(n)\to\ell^1(n)} \leq \frac{3\sqrt{3}}{2}$.

- $\bullet \|Df(a)\|_1 \le (1 |f(a)|^2) \max_j \frac{1}{1 |a_i|^2}.$
- $||Df(a)||_1 \leq \frac{1}{1-r^2}$; where $|a_i| < r$.
- Df is a map from $r\mathbb{D}^n$ to $\frac{1}{1-r^2}(\mathbb{D}^n)^*$
- •A second application of the Schwarz lemma shows that $D^2 f(0)$ is a linear operator on \mathbb{C}^n which maps $r\mathbb{D}^n$ into $\frac{1}{1-r^2}(\mathbb{D}^n)^*$.
- $\|D^2 f(0)\|_{\ell^{\infty}(n) \to \ell^1(n)} \le \frac{1}{r(1-r^2)}$
- $||D^2 f(0)||_{\ell^{\infty}(n) \to \ell^1(n)} \le \frac{3\sqrt{3}}{2}$.

- $\bullet \|Df(a)\|_1 \le (1 |f(a)|^2) \max_j \frac{1}{1 |a_i|^2}.$
- $||Df(a)||_1 \leq \frac{1}{1-r^2}$; where $|a_i| < r$.
- Df is a map from $r\mathbb{D}^n$ to $\frac{1}{1-r^2}(\mathbb{D}^n)^*$.
- •A second application of the Schwarz lemma shows that $D^2f(0)$ is a linear operator on \mathbb{C}^n which maps $r\mathbb{D}^n$ into $\frac{1}{1-r^2}(\mathbb{D}^n)^*$.
- $\|D^2 f(0)\|_{\ell^{\infty}(n) \to \ell^1(n)} \le \frac{1}{r(1-r^2)}$
- $||D^2 f(0)||_{\ell^{\infty}(n) \to \ell^1(n)} \le \frac{3\sqrt{3}}{2}$.

- $\bullet \|Df(a)\|_1 \le (1 |f(a)|^2) \max_j \frac{1}{1 |a_i|^2}.$
- $||Df(a)||_1 \leq \frac{1}{1-r^2}$; where $|a_i| < r$.
- Df is a map from $r\mathbb{D}^n$ to $\frac{1}{1-r^2}(\mathbb{D}^n)^*$.
- •A second application of the Schwarz lemma shows that $D^2f(0)$ is a linear operator on \mathbb{C}^n which maps $r\mathbb{D}^n$ into $\frac{1}{1-r^2}(\mathbb{D}^n)^*$.
- $\bullet \|D^2 f(0)\|_{\ell^{\infty}(n) \to \ell^1(n)} \le \frac{1}{r(1-r^2)}.$
- $||D^2f(0)||_{\ell^{\infty}(n)\to\ell^1(n)} \leq \frac{3\sqrt{3}}{2}$.

- $\bullet \|Df(a)\|_1 \le (1 |f(a)|^2) \max_j \frac{1}{1 |a_i|^2}.$
- $||Df(a)||_1 \leq \frac{1}{1-r^2}$; where $|a_i| < r$.
- Df is a map from $r\mathbb{D}^n$ to $\frac{1}{1-r^2}(\mathbb{D}^n)^*$.
- •A second application of the Schwarz lemma shows that $D^2f(0)$ is a linear operator on \mathbb{C}^n which maps $r\mathbb{D}^n$ into $\frac{1}{1-r^2}(\mathbb{D}^n)^*$.
- $\bullet \|D^2 f(0)\|_{\ell^{\infty}(n) \to \ell^1(n)} \le \frac{1}{r(1-r^2)}.$
- $||D^2 f(0)||_{\ell^{\infty}(n) \to \ell^1(n)} \le \frac{3\sqrt{3}}{2}$.

- $\bullet \|Df(a)\|_1 \le (1 |f(a)|^2) \max_j \frac{1}{1 |a_i|^2}.$
- $||Df(a)||_1 \leq \frac{1}{1-r^2}$; where $|a_i| < r$.
- Df is a map from $r\mathbb{D}^n$ to $\frac{1}{1-r^2}(\mathbb{D}^n)^*$.
- •A second application of the Schwarz lemma shows that $D^2f(0)$ is a linear operator on \mathbb{C}^n which maps $r\mathbb{D}^n$ into $\frac{1}{1-r^2}(\mathbb{D}^n)^*$.
- $\bullet \|D^2 f(0)\|_{\ell^{\infty}(n) \to \ell^1(n)} \le \frac{1}{r(1-r^2)}.$
- $||D^2f(0)||_{\ell^{\infty}(n)\to\ell^1(n)} \leq \frac{3\sqrt{3}}{2}$.

- $\bullet \|Df(a)\|_1 \le (1 |f(a)|^2) \max_j \frac{1}{1 |a_i|^2}.$
- $||Df(a)||_1 \leq \frac{1}{1-r^2}$; where $|a_i| < r$.
- Df is a map from $r\mathbb{D}^n$ to $\frac{1}{1-r^2}(\mathbb{D}^n)^*$.
- •A second application of the Schwarz lemma shows that $D^2f(0)$ is a linear operator on \mathbb{C}^n which maps $r\mathbb{D}^n$ into $\frac{1}{1-r^2}(\mathbb{D}^n)^*$.
- $\bullet \|D^2 f(0)\|_{\ell^{\infty}(n) \to \ell^1(n)} \le \frac{1}{r(1-r^2)}.$
- $||D^2f(0)||_{\ell^{\infty}(n)\to\ell^1(n)} \leq \frac{3\sqrt{3}}{2}$.

$$\|(a_{ij})\|_{\ell^{\infty}(n)\to\ell^{1}(n)} \le \frac{3\sqrt{3}}{4} \approx 1.3.$$
 (3)

$$p(z_1,\ldots,z_n) = a_0 + \sum_{j=1}^n a_j z_j + \sum_{j,k=1}^n a_{jk} z_j z_k.$$

$$B = \begin{pmatrix} \frac{a_0}{a_1/2} & \frac{a_1/2}{a_{11}} & \frac{a_2/2}{a_{12}} & \cdots & \frac{a_n/2}{a_{1n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{a_n/2} & \frac{1}{a_{n1}} & \frac{1}{a_{n2}} & \cdots & \frac{1}{a_{nn}} \end{pmatrix} \text{ and using (3) we see that the proof is complete.}$$

$$\|(a_{ij})\|_{\ell^{\infty}(n)\to\ell^{1}(n)} \leq \frac{3\sqrt{3}}{4} \approx 1.3.$$
 (3)

$$p(z_1,...,z_n) = a_0 + \sum_{j=1}^n a_j z_j + \sum_{j,k=1}^n a_{jk} z_j z_k.$$

$$B = \begin{pmatrix} a_0 & a_1/2 & a_2/2 & \cdots & a_n/2 \\ a_1/2 & a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_n/2 & a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$
 and using (3) we see that the proof is complete

$$\|(a_{ij})\|_{\ell^{\infty}(n)\to\ell^{1}(n)} \leq \frac{3\sqrt{3}}{4} \approx 1.3.$$
 (3)

• $p(z_1,...,z_n) = a_0 + \sum_{j=1}^n a_j z_j + \sum_{j,k=1}^n a_{jk} z_j z_k$.

$$B = \begin{pmatrix} a_0 & a_1/2 & a_2/2 & \cdots & a_n/2 \\ a_1/2 & a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_n/2 & a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$
 and using (3) we see that the proof is complete

$$\|(a_{ij})\|_{\ell^{\infty}(n)\to\ell^{1}(n)} \leq \frac{3\sqrt{3}}{4} \approx 1.3.$$
 (3)

• $p(z_1,...,z_n) = a_0 + \sum_{j=1}^n a_j z_j + \sum_{j,k=1}^n a_{jk} z_j z_k$.

•Now applying Grothendieck inequality to

$$B = \begin{pmatrix} a_0 & a_1/2 & a_{21}/2 & \cdots & a_{n}/2 \\ a_{1/2} & a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & & \vdots \\ a_{n/2} & a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \text{ and using (3) we see that the}$$
 proof is complete.

< ロ ト ∢ ┛ ト ∢ 重 ト ∢ 重 ト) 重 ・ 夕 Q で

Operator space structures on $\ell^1(n)$

Definition

An abstract operator space is a normed linear space V together with a norm $\|\cdot\|_k$ defined on the linear space

$$M_k(V) := \{ (v_{ij}) | v_{ij} \in V, 1 \leq i, j \leq k \}, \ k \in \mathbb{N},$$

with the understanding that $\|\cdot\|_1$ is the norm of V and the family of norms $\|\cdot\|_k$ satisfies the compatibility conditions:

- 1. $||T \oplus S||_{p+q} = \max\{||T||_p, ||S||_q\}$ and
- 2. $||ASB||_q \le ||A||_{op} ||S||_p ||B||_{op}$

for all
$$S \in M_q(V), T \in M_p(V), A \in M_{q \times p}(\mathbb{C})$$
 and $B \in M_{p \times q}(\mathbb{C})$.

- For two operator spaces $(V, \|\cdot\|_k)$ and $(W, \|\cdot\|_k)$, a linear bijection $T: V \to W$ is said to be a complete isometry if $T \otimes I_k: (M_k(V), \|\cdot\|_k) \to (M_k(W), \|\cdot\|_k)$ is an isometry for every $k \in \mathbb{N}$.
- •Operator spaces $(V, \|\cdot\|_k)$ and $(W, \|\cdot\|_k)$ are said to be completely isometric if there is a linear complete isometry $T: V \to W$.
- ulletThere are two natural operator space structures on any normed linear space V.

- For two operator spaces $(V, \|\cdot\|_k)$ and $(W, \|\cdot\|_k)$, a linear bijection $T: V \to W$ is said to be a complete isometry if $T \otimes I_k: (M_k(V), \|\cdot\|_k) \to (M_k(W), \|\cdot\|_k)$ is an isometry for every $k \in \mathbb{N}$.
- •Operator spaces $(V, \|\cdot\|_k)$ and $(W, \|\cdot\|_k)$ are said to be completely isometric if there is a linear complete isometry $T: V \to W$.
- ullet There are two natural operator space structures on any normed linear space V.

- For two operator spaces $(V, \|\cdot\|_k)$ and $(W, \|\cdot\|_k)$, a linear bijection $T: V \to W$ is said to be a complete isometry if $T \otimes I_k: (M_k(V), \|\cdot\|_k) \to (M_k(W), \|\cdot\|_k)$ is an isometry for every $k \in \mathbb{N}$.
- •Operator spaces $(V, \|\cdot\|_k)$ and $(W, \|\cdot\|_k)$ are said to be completely isometric if there is a linear complete isometry $T: V \to W$.
- •There are two natural operator space structures on any normed linear space V.

Definition (MIN Structure)

The MIN operator space structure denoted by MIN(V) on a normed linear space V is obtained by the isometric embedding of V in to the C^* -algebra $C((V^*)_1)$, the space of continuous functions on the unit ball $(V^*)_1$ of the dual space V^* . Thus for (v_{ij}) in $M_k(V)$, we set

$$\|(v_{ij})\|_{MIN} = \sup\{\|(f(v_{ij}))\| : f \in (V^*)_1\},$$

where the norm of a scalar matrix $(f(v_{ij}))$ is the operator norm in M_k .

Definition (MAX Structure)

Let V be a normed linear space and $(v_{ij}) \in M_k(V)$. Define

$$\|(v_{ij})\|_{MAX} = \sup\{\|(Tv_{ij})\|: T: V \to \mathcal{B}(\mathbb{H})\},$$

where the supremum is taken over all isometries T and all Hilbert spaces \mathbb{H} . This operator space structure is denoted by MAX(V).

•The map $\phi: \ell^{\infty}(n) \to \mathcal{B}(\mathbb{C}^n)$, defined by $\phi(z_1, \ldots, z_n) = \operatorname{diag}(z_1, \ldots, z_n)$, is an isometric embedding of the normed linear space $\ell^{\infty}(n)$.

Lemma

For $m \in \mathbb{N}$ and $\theta_1, \dots, \theta_m \in [0, 2\pi)$, there exists $a_1, a_2 \in \mathbb{C}$ such that

$$\max_{j=1,\dots,m} \left| a_1 + e^{i\theta_j} a_2 \right| < |a_1| + |a_2|.$$

Consequently, there is no isometric embedding of $\ell^1(n)$, n > 1, into $\ell^{\infty}(k)$ for any $k \in \mathbb{N}$.

Proof of the Consequence:

• Suppose $S: \ell^1(2) \to \ell^\infty(k)$ defined by

$$S(z_1, z_2) := (a_1z_1 + b_1z_2, \dots, a_kz_1 + b_kz_2)$$

is an isometry with smallest possible $k \in \mathbb{N}$. Then, due to the minimality of k, it follows that $|a_j| = |b_j| = 1$ for $j = 1, \ldots, k$. Without loss of generality, we can assume that $a_j = 1$ for $j = 1, \ldots, n$. From the Lemma, it follows that S cannot be an isometry.

• The converse is a restatement of the Lemma, namely, $S: \mathbb{A}(2) \to \mathbb{A}(2)$ defined by

$$S: \ell^1(2) \to \ell^\infty(k)$$
 defined by

$$S(z_1,z_2):=(z_1+e^{i heta_1}z_2,\ldots,z_1+e^{i heta_k}z_2)$$
 can not be an isometry

Proof of the Consequence:

• Suppose $S: \ell^1(2) \to \ell^\infty(k)$ defined by

$$S(z_1,z_2):=(a_1z_1+b_1z_2,\ldots,a_kz_1+b_kz_2)$$

is an isometry with smallest possible $k \in \mathbb{N}$. Then, due to the minimality of k, it follows that $|a_j| = |b_j| = 1$ for $j = 1, \ldots, k$. Without loss of generality, we can assume that $a_j = 1$ for $j = 1, \ldots, n$. From the Lemma, it follows that S cannot be an isometry.

• The converse is a restatement of the Lemma, namely, $S:\ell^1(2)\to\ell^\infty(k)$ defined by $S(z_1,z_2):=(z_1+e^{i\theta_1}z_2,\ldots,z_1+e^{i\theta_k}z_2)$ can not be an isometry.

Theorem

There is no finite dimensional embedding of $\ell^1(2)$.

Proof: • Let $\phi(a_1, a_2) = a_1 T_1 + a_2 T_2$ be an *n*-dimensional isometric embedding of $\ell^1(2)$.

•
$$U_i := \begin{pmatrix} T_i & D_{T_i^*} \\ D_{T_i} & -T_i^* \end{pmatrix} i = 1, 2$$
, where D_{T_i} is the positive square root of the (positive) energy $I_i = T_i^* T_i$

There is no finite dimensional embedding of $\ell^1(2)$.

•
$$U_i := \begin{pmatrix} T_i & D_{T_i^*} \\ D_{T_i} & -T_i^* \end{pmatrix}$$
 $i = 1, 2$, where D_{T_i} is the positive square root of the (positive) operator $I - T_i^* T_i$.

- $\bullet P_{\mathbb{C}^n}(a_1U_1+a_2U_2)_{|\mathbb{C}^n}=a_1T_1+a_2T_2.$
- $ullet \psi(a_1,a_2)=a_1U_1+a_2U_2$ is also an isometry
- Since norms are preserved under unitary operations, without loss of generality, we assume $U_1 = I$ and U_2 to be a diagonal unitary, say, D.
- •Applying the lemma, we obtain complex numbers a_1 and a_2 such that $||\psi(a_1, a_2)|| < |a_1| + |a_2|$.

There is no finite dimensional embedding of $\ell^1(2)$.

$$\bullet U_i := \begin{pmatrix} T_i & D_{T_i^*} \\ D_{T_i} & -T_i^*, \end{pmatrix} i = 1, 2, \text{ where } D_{T_i} \text{ is the positive square root of the (positive) operator } I - T_i^* T_i.$$

- $\bullet P_{\mathbb{C}^n}(a_1U_1+a_2U_2)_{|\mathbb{C}^n}=a_1T_1+a_2T_2.$
- $\bullet \psi(a_1, a_2) = a_1 U_1 + a_2 U_2$ is also an isometry.
- Since norms are preserved under unitary operations, without loss of generality, we assume $U_1 = I$ and U_2 to be a diagonal unitary, say, D.
 •Applying the lemma, we obtain complex numbers a_1 and a_2 such

There is no finite dimensional embedding of $\ell^1(2)$.

•
$$U_i := \begin{pmatrix} T_i & D_{T_i^*} \\ D_{T_i} & -T_i^*, \end{pmatrix} i = 1, 2$$
, where D_{T_i} is the positive square root of the (positive) operator $I - T_i^* T_i$.

- $\bullet P_{\mathbb{C}^n}(a_1U_1+a_2U_2)_{|\mathbb{C}^n}=a_1T_1+a_2T_2.$
- • $\psi(a_1, a_2) = a_1 U_1 + a_2 U_2$ is also an isometry.
- Since norms are preserved under unitary operations, without loss of generality, we assume $U_1 = I$ and U_2 to be a diagonal unitary, say, D. •Applying the lemma, we obtain complex numbers a_1 and a_2 such that $\|\psi(a_1,a_2)\| < |a_1| + |a_2|$.

There is no finite dimensional embedding of $\ell^1(2)$.

Proof: • Let $\phi(a_1, a_2) = a_1 T_1 + a_2 T_2$ be an *n*-dimensional isometric embedding of $\ell^1(2)$.

- $U_i := \begin{pmatrix} T_i & D_{T_i^*} \\ D_{T_i} & -T_i^* \end{pmatrix}$ i = 1, 2, where D_{T_i} is the positive square root of the (positive) operator $I T_i^* T_i$.
- $\bullet P_{\mathbb{C}^n}(a_1U_1+a_2U_2)_{|\mathbb{C}^n}=a_1T_1+a_2T_2.$
- • $\psi(a_1, a_2) = a_1 U_1 + a_2 U_2$ is also an isometry.
- Since norms are preserved under unitary operations, without loss of generality, we assume $U_1 = I$ and U_2 to be a diagonal unitary, say, D.

•Applying the lemma, we obtain complex numbers a_1 and a_2 such that $\|\psi(a_1,a_2)\|<|a_1|+|a_2|$.

There is no finite dimensional embedding of $\ell^1(2)$.

- $U_i := \begin{pmatrix} T_i & D_{T_i^*} \\ D_{T_i} & -T_i^*, \end{pmatrix} i = 1, 2$, where D_{T_i} is the positive square root of the (positive) operator $I T_i^* T_i$.
- $\bullet P_{\mathbb{C}^n}(a_1U_1+a_2U_2)_{|\mathbb{C}^n}=a_1T_1+a_2T_2.$
- $\bullet \psi(a_1, a_2) = a_1 U_1 + a_2 U_2$ is also an isometry.
- Since norms are preserved under unitary operations, without loss of generality, we assume $U_1 = I$ and U_2 to be a diagonal unitary, say, D.
- •Applying the lemma, we obtain complex numbers a_1 and a_2 such that $||\psi(a_1, a_2)|| < |a_1| + |a_2|$.

- Let $\mathbb{H}_1, \ldots, \mathbb{H}_n$ be Hilbert spaces and T_i be a contraction on \mathbb{H}_i for $i = 1, \ldots, n$.
- Assume that the unit circle \mathbb{T} is contained in $\sigma(T_i)$, the spectrum of T_i , for i = 1, ..., n.
- Denote

$$\tilde{T}_1 = T_1 \otimes I^{\otimes (n-1)}, \, \tilde{T}_2 = I \otimes T_2 \otimes I^{\otimes (n-2)}, \dots, \, \tilde{T}_n = I^{\otimes (n-1)} \otimes T_n$$

The function

$$f_{\mathbf{T}}: \ell^1(n) \to \mathcal{B}(\mathbb{H}_1 \otimes \cdots \otimes \mathbb{H}_n)$$

defined by

$$f_T(a_1,\ldots,a_n):=a_1\,\tilde{T}_1+\cdots+a_n\,\tilde{T}_n.$$

- Let $\mathbb{H}_1, \ldots, \mathbb{H}_n$ be Hilbert spaces and T_i be a contraction on \mathbb{H}_i for $i = 1, \ldots, n$.
- Assume that the unit circle \mathbb{T} is contained in $\sigma(T_i)$, the spectrum of T_i , for $i=1,\ldots,n$.
- Denote

$$\tilde{T}_1 = T_1 \otimes I^{\otimes (n-1)}, \, \tilde{T}_2 = I \otimes T_2 \otimes I^{\otimes (n-2)}, \dots, \, \tilde{T}_n = I^{\otimes (n-1)} \otimes T_n$$

The function

$$f_{m{T}}:\ell^1(n) o \mathcal{B}(\mathbb{H}_1\otimes\cdots\otimes\mathbb{H}_n)$$

defined by

$$f_T(a_1,\ldots,a_n):=a_1\,\tilde{T}_1+\cdots+a_n\,\tilde{T}_n$$

- Let $\mathbb{H}_1, \ldots, \mathbb{H}_n$ be Hilbert spaces and T_i be a contraction on \mathbb{H}_i for $i = 1, \ldots, n$.
- Assume that the unit circle \mathbb{T} is contained in $\sigma(T_i)$, the spectrum of T_i , for $i=1,\ldots,n$.
- Denote

$$\tilde{T}_1 = T_1 \otimes I^{\otimes (n-1)}, \, \tilde{T}_2 = I \otimes T_2 \otimes I^{\otimes (n-2)}, \ldots, \, \tilde{T}_n = I^{\otimes (n-1)} \otimes T_n.$$

Theorem *The function*

$$f_{\mathbf{T}}: \ell^1(n) \to \mathcal{B}(\mathbb{H}_1 \otimes \cdots \otimes \mathbb{H}_n)$$

defined by

$$f_{\mathbf{T}}(a_1,\ldots,a_n):=a_1\tilde{T}_1+\cdots+a_n\tilde{T}_n$$

- Let $\mathbb{H}_1, \ldots, \mathbb{H}_n$ be Hilbert spaces and T_i be a contraction on \mathbb{H}_i for $i = 1, \ldots, n$.
- Assume that the unit circle \mathbb{T} is contained in $\sigma(T_i)$, the spectrum of T_i , for i = 1, ..., n.
- Denote

$$\tilde{T}_1 = T_1 \otimes I^{\otimes (n-1)}, \, \tilde{T}_2 = I \otimes T_2 \otimes I^{\otimes (n-2)}, \dots, \, \tilde{T}_n = I^{\otimes (n-1)} \otimes T_n.$$

Theorem
The function

$$f_{\mathcal{T}}: \ell^1(n) \to \mathcal{B}(\mathbb{H}_1 \otimes \cdots \otimes \mathbb{H}_n)$$

defined by

$$f_{\mathcal{T}}(a_1,\ldots,a_n):=a_1\,\tilde{T}_1+\cdots+a_n\,\tilde{T}_n.$$

- T_1, \ldots, T_n contractions on Hilbert spaces $\mathbb{H}_1, \ldots, \mathbb{H}_n$ with $\mathbb{T} \subseteq \sigma(T_i)$.
- $\tilde{T}_1 = T_1 \otimes I_{\mathbb{H}_2} \otimes \cdots \otimes I_{\mathbb{H}_n}, \ldots, \tilde{T}_n = I_{\mathbb{H}_1} \otimes \cdots \otimes I_{\mathbb{H}_{n-1}} \otimes T_n.$
- The map f_T defined as in the Theorem is an isometry.
- The Sz.-Nagy dilation theorem gives unitary maps $U_j: \mathbb{K}_j \to \mathbb{K}_j$, dilating the contraction T_i , for $j = 1, \ldots, n$.
- The o.s.s. defined by the isometry
- $g(a_1,\ldots,a_n)=a_1U_1\otimes I_{\mathbb{K}_2\otimes\cdots\otimes\mathbb{K}_n}+\cdots+a_nI_{\mathbb{K}_1\otimes\cdots\otimes\mathbb{K}_{n-1}}\otimes U_n$, is no lesser than that of f_T .
- Since U_1, \ldots, U_n are unitary maps, C^* —algebra generated by $U_1 \otimes I_{\mathbb{K}_2 \otimes \cdots \otimes \mathbb{K}_n}, \ldots, I_{\mathbb{K}_1 \otimes \cdots \otimes \mathbb{K}_{n-1}} \otimes U_n$ is commutative.
- Therefore we conclude that g is a complete isometry.

- T_1, \ldots, T_n contractions on Hilbert spaces $\mathbb{H}_1, \ldots, \mathbb{H}_n$ with $\mathbb{T} \subseteq \sigma(T_i)$.
- $\overline{\tilde{T}}_1 = T_1 \otimes I_{\mathbb{H}_2} \otimes \cdots \otimes I_{\mathbb{H}_n}, \ldots, \tilde{T}_n = I_{\mathbb{H}_1} \otimes \cdots \otimes I_{\mathbb{H}_{n-1}} \otimes T_n.$
- ullet The map f_{T} defined as in the Theorem is an isometry.
- The Sz.-Nagy dilation theorem gives unitary maps $U_j: \mathbb{K}_j \to \mathbb{K}_j$, dilating the contraction T_j , for $j=1,\ldots,n$.
- The o.s.s. defined by the isometry
- $g(a_1,\ldots,a_n)=a_1U_1\otimes I_{\mathbb{K}_2\otimes\cdots\otimes\mathbb{K}_n}+\cdots+a_nI_{\mathbb{K}_1\otimes\cdots\otimes\mathbb{K}_{n-1}}\otimes U_n$, is no lesser than that of f_T .
- Since U_1, \ldots, U_n are unitary maps, C^* —algebra generated by $U_1 \otimes I_{\mathbb{K}_2 \otimes \cdots \otimes \mathbb{K}_n}, \ldots, I_{\mathbb{K}_1 \otimes \cdots \otimes \mathbb{K}_{n-1}} \otimes U_n$ is commutative.
- Therefore we conclude that g is a complete isometry.

- T_1, \ldots, T_n contractions on Hilbert spaces $\mathbb{H}_1, \ldots, \mathbb{H}_n$ with $\mathbb{T} \subseteq \sigma(T_i)$.
- $\tilde{T}_1 = T_1 \otimes I_{\mathbb{H}_2} \otimes \cdots \otimes I_{\mathbb{H}_n}, \ldots, \tilde{T}_n = I_{\mathbb{H}_1} \otimes \cdots \otimes I_{\mathbb{H}_{n-1}} \otimes T_n.$
- The map f_T defined as in the Theorem is an isometry.
- The Sz.-Nagy dilation theorem gives unitary maps $U_j: \mathbb{K}_j \to \mathbb{K}_j$, dilating the contraction T_j , for $j = 1, \ldots, n$.
- The o.s.s. defined by the isometry
- $g(a_1,\ldots,a_n)=a_1U_1\otimes I_{\mathbb{K}_2\otimes\cdots\otimes\mathbb{K}_n}+\cdots+a_nI_{\mathbb{K}_1\otimes\cdots\otimes\mathbb{K}_{n-1}}\otimes U_n$, is no lesser than that of $f_{\mathcal{T}}$.
- Since U_1, \ldots, U_n are unitary maps, C^* —algebra generated by $U_1 \otimes I_{\mathbb{K}_2 \otimes \cdots \otimes \mathbb{K}_n}, \ldots, I_{\mathbb{K}_1 \otimes \cdots \otimes \mathbb{K}_{n-1}} \otimes U_n$ is commutative.
- Therefore we conclude that *g* is a complete isometry.

- T_1, \ldots, T_n contractions on Hilbert spaces $\mathbb{H}_1, \ldots, \mathbb{H}_n$ with $\mathbb{T} \subseteq \sigma(T_i)$.
- $\tilde{T}_1 = T_1 \otimes I_{\mathbb{H}_2} \otimes \cdots \otimes I_{\mathbb{H}_n}, \ldots, \tilde{T}_n = I_{\mathbb{H}_1} \otimes \cdots \otimes I_{\mathbb{H}_{n-1}} \otimes T_n.$
- The map f_T defined as in the Theorem is an isometry.
- The Sz.-Nagy dilation theorem gives unitary maps $U_j: \mathbb{K}_j \to \mathbb{K}_j$, dilating the contraction T_j , for $j = 1, \ldots, n$.
- The o.s.s. defined by the isometry
- $g(a_1,\ldots,a_n)=a_1U_1\otimes I_{\mathbb{K}_2\otimes\cdots\otimes\mathbb{K}_n}+\cdots+a_nI_{\mathbb{K}_1\otimes\cdots\otimes\mathbb{K}_{n-1}}\otimes U_n$, is no lesser than that of f_T .
- Since U_1, \ldots, U_n are unitary maps, C^* —algebra generated by $U_1 \otimes I_{\mathbb{K}_2 \otimes \cdots \otimes \mathbb{K}_n}, \ldots, I_{\mathbb{K}_1 \otimes \cdots \otimes \mathbb{K}_{n-1}} \otimes U_n$ is commutative.
- ullet Therefore we conclude that g is a complete isometry.

- T_1, \ldots, T_n contractions on Hilbert spaces $\mathbb{H}_1, \ldots, \mathbb{H}_n$ with $\mathbb{T} \subseteq \sigma(T_i)$.
- $\overline{\tilde{T}}_1 = T_1 \otimes I_{\mathbb{H}_2} \otimes \cdots \otimes I_{\mathbb{H}_n}, \ldots, \tilde{T}_n = I_{\mathbb{H}_1} \otimes \cdots \otimes I_{\mathbb{H}_{n-1}} \otimes T_n.$
- The map f_T defined as in the Theorem is an isometry.
- The Sz.-Nagy dilation theorem gives unitary maps $U_j: \mathbb{K}_j \to \mathbb{K}_j$, dilating the contraction T_j , for $j = 1, \ldots, n$.
- The o.s.s. defined by the isometry

 $g(a_1,\ldots,a_n)=a_1U_1\otimes I_{\mathbb{K}_2\otimes\cdots\otimes\mathbb{K}_n}+\cdots+a_nI_{\mathbb{K}_1\otimes\cdots\otimes\mathbb{K}_{n-1}}\otimes U_n$, is no lesser than that of f_T .

- Since U_1,\ldots,U_n are unitary maps, C^* —algebra generated by $U_1\otimes I_{\mathbb{K}_2\otimes\cdots\otimes\mathbb{K}_n},\ldots,I_{\mathbb{K}_1\otimes\cdots\otimes\mathbb{K}_{n-1}}\otimes U_n$ is commutative.
- Therefore we conclude that g is a complete isometry.

- T_1, \ldots, T_n contractions on Hilbert spaces $\mathbb{H}_1, \ldots, \mathbb{H}_n$ with $\mathbb{T} \subseteq \sigma(T_i)$.
- $\overline{\tilde{T}}_1 = T_1 \otimes I_{\mathbb{H}_2} \otimes \cdots \otimes I_{\mathbb{H}_n}, \ldots, \tilde{T}_n = I_{\mathbb{H}_1} \otimes \cdots \otimes I_{\mathbb{H}_{n-1}} \otimes T_n.$
- The map f_T defined as in the Theorem is an isometry.
- The Sz.-Nagy dilation theorem gives unitary maps $U_j: \mathbb{K}_j \to \mathbb{K}_j$, dilating the contraction T_j , for $j = 1, \ldots, n$.
- The o.s.s. defined by the isometry

 $g(a_1,\ldots,a_n)=a_1U_1\otimes I_{\mathbb{K}_2\otimes\cdots\otimes\mathbb{K}_n}+\cdots+a_nI_{\mathbb{K}_1\otimes\cdots\otimes\mathbb{K}_{n-1}}\otimes U_n$, is no lesser than that of f_T .

- Since U_1, \ldots, U_n are unitary maps, C^* -algebra generated by $U_1 \otimes I_{\mathbb{K}_2 \otimes \cdots \otimes \mathbb{K}_n}, \ldots, I_{\mathbb{K}_1 \otimes \cdots \otimes \mathbb{K}_{n-1}} \otimes U_n$ is commutative.
- Therefore we conclude that g is a complete isometry

- T_1, \ldots, T_n contractions on Hilbert spaces $\mathbb{H}_1, \ldots, \mathbb{H}_n$ with $\mathbb{T} \subseteq \sigma(T_i)$.
- $\tilde{T}_1 = T_1 \otimes I_{\mathbb{H}_2} \otimes \cdots \otimes I_{\mathbb{H}_n}, \ldots, \tilde{T}_n = I_{\mathbb{H}_1} \otimes \cdots \otimes I_{\mathbb{H}_{n-1}} \otimes T_n.$
- The map f_T defined as in the Theorem is an isometry.
- The Sz.-Nagy dilation theorem gives unitary maps $U_j: \mathbb{K}_j \to \mathbb{K}_j$, dilating the contraction T_j , for $j = 1, \ldots, n$.
- The o.s.s. defined by the isometry

 $g(a_1,\ldots,a_n)=a_1U_1\otimes I_{\mathbb{K}_2\otimes\cdots\otimes\mathbb{K}_n}+\cdots+a_nI_{\mathbb{K}_1\otimes\cdots\otimes\mathbb{K}_{n-1}}\otimes U_n$, is no lesser than that of f_T .

- Since U_1, \ldots, U_n are unitary maps, C^* -algebra generated by $U_1 \otimes I_{\mathbb{K}_2 \otimes \cdots \otimes \mathbb{K}_n}, \ldots, I_{\mathbb{K}_1 \otimes \cdots \otimes \mathbb{K}_{n-1}} \otimes U_n$ is commutative.
- ullet Therefore we conclude that g is a complete isometry.

- \bullet Parrott's example shows that a linear contractive map on $\ell^1(3)$ may not be completely contractive.
- An explicit example for this, in a paper of G. Misra, explains that there are more than one operator space structure on $\ell^1(3)$. Using this example we give an explicit operator space structure on $\ell^1(3)$, which is different from the MIN structure.
- Consider the following 2×2 unitary operators:

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ U := \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \text{ and } V := \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

• The map $h: \ell^1(3) \to M_2$, defined by $h(z_1, z_2, z_3) = z_1 I + z_2 U + z_3 V$, is of norm at most 1.

- \bullet Parrott's example shows that a linear contractive map on $\ell^1(3)$ may not be completely contractive.
- An explicit example for this, in a paper of G. Misra, explains that there are more than one operator space structure on $\ell^1(3)$. Using this example we give an explicit operator space structure on $\ell^1(3)$, which is different from the MIN structure.
- Consider the following 2×2 unitary operators

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ U := \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \text{ and } V := \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

• The map $h: \ell^1(3) \to M_2$, defined by $h(z_1, z_2, z_3) = z_1 I + z_2 U + z_3 V$, is of norm at most 1.

- \bullet Parrott's example shows that a linear contractive map on $\ell^1(3)$ may not be completely contractive.
- An explicit example for this, in a paper of G. Misra, explains that there are more than one operator space structure on $\ell^1(3)$. Using this example we give an explicit operator space structure on $\ell^1(3)$, which is different from the MIN structure.
- Consider the following 2×2 unitary operators:

$$I_2 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \; U := \left(\begin{array}{cc} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array} \right) \; \mathrm{and} \; V := \left(\begin{array}{cc} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{array} \right).$$

• The map $h: \ell^1(3) \to M_2$, defined by $h(z_1, z_2, z_3) = z_1 I + z_2 U + z_3 V$, is of norm at most 1

- \bullet Parrott's example shows that a linear contractive map on $\ell^1(3)$ may not be completely contractive.
- An explicit example for this, in a paper of G. Misra, explains that there are more than one operator space structure on $\ell^1(3)$. Using this example we give an explicit operator space structure on $\ell^1(3)$, which is different from the MIN structure.
- Consider the following 2×2 unitary operators:

$$I_2 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \; U := \left(\begin{array}{cc} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array} \right) \; \mathrm{and} \; V := \left(\begin{array}{cc} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{array} \right).$$

• The map $h: \ell^1(3) \to M_2$, defined by $h(z_1, z_2, z_3) = z_1 I + z_2 U + z_3 V$, is of norm at most 1.

$$\sup_{z_1, z_2, z_3 \in \mathbb{D}} \|z_1 I + z_2 U + z_3 V\| < 3. \tag{4}$$

• Choose a diagonal operator D on $\ell^2(\mathbb{Z})$ such that $\|D\| \leq 1$ and $\mathbb{T} \subset \sigma(D)$.

• Define
$$\tilde{T}_1 := \begin{bmatrix} I & 0 \\ 0 & D \end{bmatrix}$$
, $\tilde{T}_2 := \begin{bmatrix} U & 0 \\ 0 & D \end{bmatrix}$, $\tilde{T}_3 := \begin{bmatrix} V & 0 \\ 0 & D \end{bmatrix}$

• $\hat{T}_1 = \tilde{T}_1 \otimes I \otimes I$, $\hat{T}_2 = I \otimes \tilde{T}_2 \otimes I$, $\hat{T}_3 = I \otimes I \otimes \tilde{T}_n$

• Let
$$S_1 := \hat{T}_1 \oplus I, \ S_2 := \hat{T}_2 \oplus U, \ S_3 := \hat{T}_3 \oplus V$$

$$\sup_{z_1, z_2, z_3 \in \mathbb{D}} \|z_1 I + z_2 U + z_3 V\| < 3. \tag{4}$$

• Choose a diagonal operator D on $\ell^2(\mathbb{Z})$ such that $||D|| \leq 1$ and $\mathbb{T} \subset \sigma(D)$.

Define
$$ilde{T}_1 := \left[egin{array}{ccc} I & 0 \\ 0 & D \end{array}
ight], \, ilde{T}_2 := \left[egin{array}{ccc} U & 0 \\ 0 & D \end{array}
ight], \, ilde{T}_3 := \left[egin{array}{ccc} V & 0 \\ 0 & D \end{array}
ight]$$

- $\hat{T}_1 = \tilde{T}_1 \otimes l \otimes l$, $\hat{T}_2 = l \otimes \tilde{T}_2 \otimes l$, $\hat{T}_3 = l \otimes l \otimes \tilde{T}_n$.
- Let $S_1 := \hat{T}_1 \oplus I, S_2 := \hat{T}_2 \oplus U, S_3 := \hat{T}_3 \oplus V$

$$\sup_{z_1, z_2, z_3 \in \mathbb{D}} \|z_1 I + z_2 U + z_3 V\| < 3. \tag{4}$$

- Choose a diagonal operator D on $\ell^2(\mathbb{Z})$ such that $\|D\| \leq 1$ and $\mathbb{T} \subset \sigma(D)$.
- Define $\tilde{T}_1 := \begin{bmatrix} I & 0 \\ 0 & D \end{bmatrix}$, $\tilde{T}_2 := \begin{bmatrix} U & 0 \\ 0 & D \end{bmatrix}$, $\tilde{T}_3 := \begin{bmatrix} V & 0 \\ 0 & D \end{bmatrix}$
- $\hat{T}_1 = \tilde{T}_1 \otimes I \otimes I$, $\hat{T}_2 = I \otimes \tilde{T}_2 \otimes I$, $\hat{T}_3 = I \otimes I \otimes \tilde{T}_n$
- Let $S_1 := \hat{T}_1 \oplus I$, $S_2 := \hat{T}_2 \oplus U$, $S_3 := \hat{T}_3 \oplus V$

$$\sup_{z_1, z_2, z_3 \in \mathbb{D}} \|z_1 I + z_2 U + z_3 V\| < 3. \tag{4}$$

- Choose a diagonal operator D on $\ell^2(\mathbb{Z})$ such that $||D|| \leq 1$ and $\mathbb{T} \subset \sigma(D)$.
- Define $\tilde{T}_1 := \begin{bmatrix} I & 0 \\ 0 & D \end{bmatrix}$, $\tilde{T}_2 := \begin{bmatrix} U & 0 \\ 0 & D \end{bmatrix}$, $\tilde{T}_3 := \begin{bmatrix} V & 0 \\ 0 & D \end{bmatrix}$
- $\hat{T}_1 = \tilde{T}_1 \otimes I \otimes I$, $\hat{T}_2 = I \otimes \tilde{T}_2 \otimes I$, $\hat{T}_3 = I \otimes I \otimes \tilde{T}_n$.
- Let $S_1 := T_1 \oplus I$, $S_2 := T_2 \oplus U$, $S_3 := T_3 \oplus V$

$$\sup_{z_1, z_2, z_3 \in \mathbb{D}} \|z_1 I + z_2 U + z_3 V\| < 3. \tag{4}$$

- Choose a diagonal operator D on $\ell^2(\mathbb{Z})$ such that $\|D\| \leq 1$ and $\mathbb{T} \subset \sigma(D)$.
- Define $\tilde{T}_1 := \begin{bmatrix} I & 0 \\ 0 & D \end{bmatrix}$, $\tilde{T}_2 := \begin{bmatrix} U & 0 \\ 0 & D \end{bmatrix}$, $\tilde{T}_3 := \begin{bmatrix} V & 0 \\ 0 & D \end{bmatrix}$
- $\hat{T}_1 = \tilde{T}_1 \otimes I \otimes I$, $\hat{T}_2 = I \otimes \tilde{T}_2 \otimes I$, $\hat{T}_3 = I \otimes I \otimes \tilde{T}_n$.
- Let $S_1 := \hat{T}_1 \oplus I, \ S_2 := \hat{T}_2 \oplus U, \ S_3 := \hat{T}_3 \oplus V$

- Define $S: (\ell^1(3), MIN) \longrightarrow B(\mathbb{K})$ by $S(e_1) = S_1, S(e_2) = S_2, S(e_3) = S_3$ and extend it linearly.
- From the previous theorem, $(z_1, z_2, z_3) \mapsto z_1 \tilde{T}_1 + z_2 \tilde{T}_2 + z_3 \tilde{T}_3$ is an isometry and since h is of norm at most 1, it follows that the map $(z_1, z_2, z_3) \mapsto z_1 S_1 + z_2 S_2 + z_3 S_3$ is also an isometry.

Also, we have

$$||S_1 \otimes I + S_2 \otimes U + S_3 \otimes V|| \ge ||I \otimes I + U \otimes U + V \otimes V|| = 3.$$

• On the other hand from (4), we have

$$\sup_{z_1, z_2, z_3 \in \mathbb{D}} \|z_1 I + z_2 U + z_3 V\| < 3$$

ullet Hence the operator space structure induced by S is different from the MIN structure

- Define $S: (\ell^1(3), MIN) \longrightarrow B(\mathbb{K})$ by $S(e_1) = S_1, S(e_2) = S_2, S(e_3) = S_3$ and extend it linearly.
- From the previous theorem, $(z_1, z_2, z_3) \mapsto z_1 \hat{T}_1 + z_2 \hat{T}_2 + z_3 \hat{T}_3$ is an isometry and since h is of norm at most 1, it follows that the map $(z_1, z_2, z_3) \mapsto z_1 S_1 + z_2 S_2 + z_3 S_3$ is also an isometry.

Also, we have

$$||S_1 \otimes I + S_2 \otimes U + S_3 \otimes V|| \ge ||I \otimes I + U \otimes U + V \otimes V|| = 3.$$

• On the other hand from (4), we have

$$\sup_{z_1, z_2, z_3 \in \mathbb{D}} \|z_1 I + z_2 U + z_3 V\| < 3$$

ullet Hence the operator space structure induced by S is different from the MIN structure

- Define $S: (\ell^1(3), MIN) \longrightarrow B(\mathbb{K})$ by $S(e_1) = S_1, S(e_2) = S_2, S(e_3) = S_3$ and extend it linearly.
- From the previous theorem, $(z_1, z_2, z_3) \mapsto z_1 \hat{T}_1 + z_2 \hat{T}_2 + z_3 \hat{T}_3$ is an isometry and since h is of norm at most 1, it follows that the map $(z_1, z_2, z_3) \mapsto z_1 S_1 + z_2 S_2 + z_3 S_3$ is also an isometry.
- Also, we have

$$\|S_1\otimes I+S_2\otimes U+S_3\otimes V\|\geq \|I\otimes I+U\otimes U+V\otimes V\|=3.$$

• On the other hand from (4), we have

$$\sup_{z_1, z_2, z_3 \in \mathbb{D}} \|z_1 I + z_2 U + z_3 V\| < 3$$

ullet Hence the operator space structure induced by S is different from the MIN structure

- Define $S: (\ell^1(3), MIN) \longrightarrow B(\mathbb{K})$ by $S(e_1) = S_1, S(e_2) = S_2, S(e_3) = S_3$ and extend it linearly.
- From the previous theorem, $(z_1,z_2,z_3)\mapsto z_1\hat{T}_1+z_2\hat{T}_2+z_3\hat{T}_3$ is an isometry and since h is of norm at most 1, it follows that the map $(z_1,z_2,z_3)\mapsto z_1S_1+z_2S_2+z_3S_3$ is also an isometry.
- Also, we have

$$\|S_1 \otimes I + S_2 \otimes U + S_3 \otimes V\| \ge \|I \otimes I + U \otimes U + V \otimes V\| = 3.$$

• On the other hand from (4), we have

$$\sup_{z_1, z_2, z_3 \in \mathbb{D}} \|z_1 I + z_2 U + z_3 V\| < 3$$

ullet Hence the operator space structure induced by S is different from the MIN structure.

- Define $S: (\ell^1(3), MIN) \longrightarrow B(\mathbb{K})$ by $S(e_1) = S_1, S(e_2) = S_2, S(e_3) = S_3$ and extend it linearly.
- From the previous theorem, $(z_1, z_2, z_3) \mapsto z_1 \hat{T}_1 + z_2 \hat{T}_2 + z_3 \hat{T}_3$ is an isometry and since h is of norm at most 1, it follows that the map $(z_1, z_2, z_3) \mapsto z_1 S_1 + z_2 S_2 + z_3 S_3$ is also an isometry.
- Also, we have

$$\|S_1 \otimes I + S_2 \otimes U + S_3 \otimes V\| \ge \|I \otimes I + U \otimes U + V \otimes V\| = 3.$$

• On the other hand from (4), we have

$$\sup_{z_1,z_2,z_3\in\mathbb{D}} \|z_1 I + z_2 U + z_3 V\| < 3$$

ullet Hence the operator space structure induced by S is different from the MIN structure.

Thank you