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Definition (Complex Grothendieck Constant)
Let ((ajx))nxn be a complex array satisfying

n
‘ Z ajksjtk‘ < max{|sj| |t| : 1 < j, k < n}, (1)
J,k:].

where s, t, € C. Then there exists K > 0 such that for any choice of
sequence of vectors (x;)], (yk)] in a complex Hilbert space H, we
have

n
|37 @by < Kmax{lbgllvall s 1<k <n}. (2)
Jk=1

The least constant K satisfying inequality (2) is denoted by Kg and
called complex Grothendieck constant.



Overview

e The Grothendieck constant makes an unexpected appearance in the
early work of Varopoulos. Setting

Co(n) = sup {[[p(T)] - [Ipllprco < 1, Tlleo <1},

where the supremum is taken over all complex polynomials p in n
variables of degree at most 2 and commuting n - tuples
T :=(T1,..., Ty) of contractions, he shows that

lim G(n) < 2Kg7

n—o0

where Kg is the complex Grothendieck constant.
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where Kg is the complex Grothendieck constant.
e Rajeev Gupta in his PhD thesis shows that

lim Go(n) < iKG,

which is a significant improvement in the inequality of Varopoulos.
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Overview

e Although, the embedding of £°°(n) as diagonal matrices in the
normed space (with respect to the operator norm) of n x n matrices
M, is evidently isometric, Rajeev Gupta and Md. Ramiz Reza show
that £(n), n > 1, has no such isometric embedding into Mj for any
keN.

e Several isometric embeddings of £}(n), n € N, into B(H) are
discussed.

e All of these are shown to be completely isometric to the MIN
structure. Adapting an example due to Parrott, an operator space
structure for £1(n), n > 2, is produced which is distinct from the MIN
Structure.



Theorem (Varopoulos,1976)
Suppose Kg denote the complex Grothendieck constant. Then

K& <supllp(T1,..., To)ll <2KE

where supremum is over all n € N, tuples of commuting contractions
T =(Ti,..., T,) and polynomial p of degree 2 with ||p|loc < 1.



The following theorem improves upon the upper bound of Varopolous.

Theorem
Suppose p is a polynomial of degree at most 2 in n variables and
T =(Ti,..., T,) be a tuple of commuting contractions on a Hilbert

space H. Then

3V3 ¢
lp(T1, -5 Ta)ll < 7KGH oo
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eDf(a) = ¢/(F(2)) " 1y 250)




o[ DF (a)lly < (1= |F(2)?) maxs L7



o[ DF (a)lly < (1= |F(2)?) maxs L7

e ||Df(a)]|1 < 1_—1r2; where |a;| < r.



e[| DF (), < (1~ F(2)2) maxs =
e ||Df(a)]|1 < 1_—1r2; where |a;| < r.

eDf is a map from rD" to —(D")*.

1—r2




e[| DF (), < (1~ F(2)2) maxs =
e ||Df(a)]|1 < 1# where |a;| < r.

2

eDf is a map from rD" to —(D")*.

1-r2
oA second application of the Schwarz lemma shows that D?f(0) is a

. . . 1
linear operator on C” which maps rD" into = (D")*.




o[ DF ()l < (1~ [F(2)/2) mag L.

o |Df(a)|l1 < 125 where \a,\ <r.

eDf is a map from rD" to 1_r2 (DM)*.

oA second application of the Schwarz lemma shows that D?£(0) is a
linear operator on C" which maps rD" i (ID)”)

1 D2F(O) ()1 < 177y




o[ DF ()l < (1~ [F(2)/2) mag L.

o |Df(a)|l1 < 125 where \a,\ <r.

eDf is a map from rD" to 1_r2 (DM)*.

oA second application of the Schwarz lemma shows that D?£(0) is a
linear operator on C" which maps rD" i (ID)”)

o[ D2F(0) | (m) it (o) < sy
o D2F(0) | e (mysir(n) < 22




o[ DF ()l < (1~ [F(2)/2) mag L.

o |Df(a)|l1 < 125 where \a,\ <r.

eDf is a map from rD" to 1_r2 (DM)*.

oA second application of the Schwarz lemma shows that D?£(0) is a
linear operator on C" which maps rD" i (ID)”)

o[ D2F(0) | (m) it (o) < sy
o D2F(0) | e (mysir(n) < 22




eTake f(z1,22,...,2y) = 371 aj2izj with [[f][oc < 1.



eTake f(z1, 2, ...

 Zn) = Y71 ayzizy with |[f]lee < 1.

3V3

H(aij)HE"o(n)—%l(n) < T 1.3.

(3)



oTake f(z1,22,...,20) = Y7 j—1 2jzizj with ||f]|oc < 1.

[ ]
3V3
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eTake f(z1,22,...,2y) = 371 aj2izj with [[f][oc < 1.

L]
3v3
1(@i) [l (my—er(n) < 7~ ~ 1.3. (3)

® p(z1,.-.,2p) = a0 + X j1 3jZj + 2] k=1 Ak Zj Zk-
eNow applying Grothendieck inequality to

ag ai/2  ap/2 an/2
a1/2  an a2 aip .

B = S : : and using (3) we see that the
an-/2 a;.l 3;2 ann

proof is complete. O



Operator space structures on ¢*(n)

Definition
An abstract operator space is a normed linear space V' together with
a norm || - ||k defined on the linear space

Mk(V) = {(V,J)|V,J eV,1<i,j< k}, k e N,

with the understanding that || - ||1 is the norm of V and the family of
norms || - ||x satisfies the compatibility conditions:

L |IT @ S|lp+q = max {[[ Tllp, IS|lq} and
2. |ASBllg < 1Allop ISIIplIBllop
for all S € Mg(V), T € Mp(V), A€ Mgyxp(C) and B € Mpy4(C).
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Tl (M(V), |- lk) = (Me(W), || - ||«) is an isometry for every
k € N.
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e For two operator spaces (V, || - ||x) and (W] - ||x), a linear
bijection T : V — W is said to be a complete isometry if

Tl (M(V), |- lk) = (Me(W), || - ||«) is an isometry for every
k € N.

eOperator spaces (V, || - |[x) and (W, || - ||x) are said to be completely
isometric if there is a linear complete isometry T : V — W.

eThere are two natural operator space structures on any normed
linear space V.



Definition (MIN Structure)

The MIN operator space structure denoted by MIN(V ) on a normed
linear space V is obtained by the isometric embedding of V in to the
C*-algebra C((V*)1), the space of continuous functions on the unit

ball (V*)1 of the dual space V*. Thus for (vjj) in M(V), we set

[ (vii) |y = sup LI (FQvi)) | - £ € (V1)

where the norm of a scalar matrix (f(v;;)) is the operator norm in
M.



Definition (MAX Structure)
Let V be a normed linear space and (v;;) € M(V). Define

H((VU)HMAX = sup {H((TVU)H TV = B(H)}’

where the supremum is taken over all isometries T and all Hilbert
spaces H. This operator space structure is denoted by MAX(V ).



eThe map ¢ : £>°(n) — B(C"), defined by
d(z1,...,2z,) = diag(z1,. .., zn), is an isometric embedding of the
normed linear space ¢°°(n).

Lemma
For me N and 0y,...,0m, € [0,27), there exists a1, ax € C such that
i9132’ < a1| + |a2].

max |a+e
j=1,...m

Consequently, there is no isometric embedding of #1(n), n > 1, into
0>°(k) for any k € N.



Proof of the Consequence:
e Suppose S : £(2) — £>°(k) defined by

5(21,22) = (3121 + b122, ..., akZ1 + bk22)

is an isometry with smallest possible kK € N. Then, due to the
minimality of k, it follows that |aj| = |bj| =1 for j =1,... k.
Without loss of generality, we can assume that a; = 1 for

j=1,...,n. From the Lemma, it follows that S cannot be an

isometry.



Proof of the Consequence:
e Suppose S : £(2) — £>°(k) defined by

5(21,22) = (3121 + b122, ..., akZ1 + bk22)

is an isometry with smallest possible kK € N. Then, due to the
minimality of k, it follows that |aj| = |bj| =1 for j =1,... k.
Without loss of generality, we can assume that a; = 1 for
j=1,...,n. From the Lemma, it follows that S cannot be an
isometry.

e The converse is a restatement of the Lemma, namely,

S : (1(2) — £>°(k) defined by

S(z1,20) := (21 + €% z,..., 21 + e/%2z) can not be an isometry.
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Theorem
There is no finite dimensional embedding of ¢*(2).

Proof: e Let ¢(a1,a2) = a1 T1 + a2 T2 be an n-dimensional isometric
embedding of /1(2).
Ti  Dr»
DTi - Ti*a
of the (positive) operator | — T T;.

oP(cn(alUl + 32U2)|(Cn =a1 11+ aTs.

otp(a1,a2) = a1Us + ap Uz is also an isometry.

e Since norms are preserved under unitary operations, without loss of
generality, we assume U; = [ and U, to be a diagonal unitary, say, D.
eApplying the lemma, we obtain complex numbers a; and a; such

that [|¢(a1, a2)|| < |a1] + |az|. m

ol = i =1,2, where D7, is the positive square root
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e Let Hy,...,H, be Hilbert spaces and T; be a contraction on H; for
i=1,...,n.

e Assume that the unit circle T is contained in o(T;), the spectrum
of Tj,fori=1,...,n.

e Denote

=T T,=|g e/ T,=120-1)gT,

Theorem
The function
fr:¢4(n) = B(H; ® - -- ® H,)

defined by
fr(ai,...,an) = aTi1+ - +a,T,.

is an isometry.
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e T1,..., T,— contractions on Hilbert spaces Hj, ..., H, with

T Q J( T,)

e 1 =TOlg® Q... Ta=lg, ® @k, , ® Tp.

e The map fr defined as in the Theorem is an isometry.

e The Sz.-Nagy dilation theorem gives unitary maps U; : K; — K;,
dilating the contraction T}, for j=1,...,n.

e The o.s.s. defined by the isometry

g(al, ceey a,,) =al ® k,g..ok, + + anlk,0--0K,_; ® Up, is no
lesser than that of f7.

e Since Uy, ..., U, are unitary maps, C*—algebra generated by

Ui ® IK2®~--®K,,7 R IK1®~--®K,,71 ® U, is commutative.

e Therefore we conclude that g is a complete isometry.
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e Parrott's example shows that a linear contractive map on ¢(3) may
not be completely contractive.
e An explicit example for this, in a paper of G. Misra, explains that
there are more than one operator space structure on £*(3). Using this
example we give an explicit operator space structure on £1(3), which
is different from the MIN structure.
e Consider the following 2 x 2 unitary operators:
_ V3
2
i .
2

10 1B
b=, ;] U= 4 and V =

e The map h: (1(3) — M, defined by
h(z1,z2,23) = z11 + 22U + z3V/, is of norm at most 1.

w
N N[ =
S
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e The computations done in this paper includes the following:
HHel+U® U+ V®V||=3. and

sup H21/—|—22U—|—Z3V|| < 3. (4)

z1,22,z3€D
e Choose a diagonal operator D on £2(Z) such that ||D|| < 1 and

T C o(D).
I 0 . U 0 . V o
0 D]’B'_[o D]’TE"_[O D]

eTi=Tiwiol, h=lofhel Ts=I2le T,
elet S, =T1 0,5 =T, 00U, S3:=T30V

e Define 7N'1 =
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e Define S : (¢*(3), MIN) — B(K) by

S(e1) = S1, S(e2) = S2, S(e3) = S3 and extend it linearly.

e From the previous theorem, (z1, z2, z3) — z; Ti+zTa+2zT5is an
isometry and since h is of norm at most 1, it follows that the map
(z1,22,23) — 2151 + 252 + 2353 is also an isometry.

e Also, we have

[S1@1+SeU+SeV|[|>[[lel+UU+ Ve V| =3

e On the other hand from (4), we have

sup Hle—‘rZ2U+Z3VH <3

z1,22,z3€D

e Hence the operator space structure induced by S is different from
the MIN structure.
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